Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction

Michael R. Stukel1,2, Lihini I. Aluwihare3, Katherine A. Barbeau4, Alexander M. Chekalyuk5, Ralf Goericke4, Arthur J. Miller6, Mark D. Ohman3, Angel Ruacho6, Hajoon Song3, Brandon M. Stephens3, and Michael R. Landryb

1Earth, Ocean, and Atmospheric Science Department, Florida State University, Tallahassee, FL 32306; 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92039; 3 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964; and 4 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved December 28, 2016 (received for review June 10, 2016)

Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U-234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C m⁻² d⁻¹) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional "225 mg C m⁻² d⁻¹ was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

Results and Discussion

We found that gravitational flux was amplified approximately twofold at the front relative to surrounding waters or typical nonfrontal regions of the CCE, and that subduction of organic matter contributed additional export of comparable magnitude. The former finding is based on high 238U-234Th deficiency and large particle fluxes into sediment traps in the frontal region. The latter transport of particles produced in the coastal area to the offshore region where net export is expected (20–23). However, the expected high export ratio in offshore waters of the CCE is not supported by existing in situ measurements (19, 24).

Submesoscale and mesoscale fronts are common features in the southern CCE and are increasing in frequency (25). These features are often locations with enhanced nutrient input to the surface layer and elevated biological standing stocks and particle concentrations (26–28). To understand the potential roles of frontal systems in carbon export via both gravitational sinking and subduction, we studied a frontal region inshore of the California Current off Southern California in August 2012 using a combination of transect sampling and Lagrangian experiments (i.e., tracking the temporal evolution of water parcels). In the results presented in Results and Discussion, we (i) quantify phytoplankton carbon production; (ii) determine vertical carbon transport due to sinking particles using sediment trap and 234Th methods; (iii) evaluate potential mechanisms driving enhanced gravitational flux, including mesozooplankton fecal pellet production and diatom trace metal limitation; and (iv) estimate subduction of particles to depth using a data assimilative Regional Ocean Modeling System (ROMS) model.

Significance

Transport of organic carbon from the sunlit surface ocean to deeper depths drives net oceanic uptake of CO₂ from the atmosphere. However, mechanisms that control this carbon export remain poorly constrained, limiting our ability to model and predict future changes in this globally important process. We show that the flux of sinking particles (typically considered the dominant form of downward transport of organic carbon) is twice as high at a frontal system, relative to surrounding waters or to nonfrontal conditions. Furthermore, downward transport by subduction leads to additional carbon export at the front that is similar in magnitude to the sinking flux. Such enhanced C export at episodic and mesoscale features needs to be incorporated into biogeochemical forecast models.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence should be addressed. Email: mstukel@fsu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1609435114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1609435114

PNAS Early Edition | 1 of 6
finding is supported by vertical sections of 234Th, particulate organic carbon (POC), and total organic carbon (TOC) across the front as well as a physical model assimilating the results of satellite remote sensing products and numerous temperature and salinity profiles in the frontal region. In Gravitational Flux and Subduction of Organic Matter, we explain this evidence in detail.

Gravitational Flux. The study site was a stable eddy-related frontal region (hereafter E-Front; Fig. 1) characterized by sloping isopycnals (density surfaces), with the 1,024.5 kg m$^{-3}$ to 1,024.9 kg m$^{-3}$ isopycnal surfaces outcropping near the core of the front and descending to a depth of ~50 m on the western (offshore) side of the front (Fig. 2). The strongest surface expression of E-Front was an east–west salinity gradient, with salinity of 33.35 at the front center (Fig. S1). For further analyses, we define the eastern boundary (coastal side) of E-Front as the location where the 33.5-salinity isopleths outcrops to the surface, and the western boundary (offshore) as the location where the 1,024.2 kg m$^{-3}$ isopycnals shoals to a depth of 30 m.

Surface sampling during an initial mesoscale survey (30 July to 5 August) showed high 234Th deficiency (relative to secular equilibrium with 238U) on the coastal side of the front, indicating high particle export (Fig. 1B). The E-Front core acted as a barrier separating this high-deficiency water from offshore low-deficiency waters. Three weeks later, a repeat survey showed high surface 234Th deficiency throughout the study region (Fig. 1C). Including both surveys, surface 234Th concentrations were lower than typically found in nonfrontal regions of the CCE (Fig. 1D, $P < 0.01$, two-sided Mann–Whitney U test), indicating high 234Th deficiency and enhanced particle export. In fact, the median deficiency was higher than all but one previous surface measurement of 234Th made in nonfrontal regions on three previous month-long cruises in the CCE. This finding suggests that export near the front was substantially higher than would be expected in the region when fronts are absent. Although enhanced vertical flux at the front is not conclusively demonstrated by the 234Th results alone due to the long half-life of 234Th (~24 d) relative to the short residence time of water in the front (3 to 4 d, based on drifter trajectories), this conclusion is also supported by the sinking material collected in shallow drifting sediment traps.

We deployed sediment traps during five Lagrangian experiments (hereafter “cycles”) in the core of and to either side of E-Front. Temperature–salinity (T-S) plots (Fig. S2A) showed that cycle 1 sampled the portion of E-Front with outcropping isopycnals, whereas cycles 2 and 5 sampled the western portion of E-Front where front expression was predominantly subsurface (with cycle 5 slightly closer to the center of the front). Cycles 3 and 4 sampled nonfrontal water on the coastal and offshore sides, respectively, of E-Front. Sediment traps showed significantly higher carbon export near the base of the euphotic zone at the front (cycle 1, 437 ± 25 mg C m$^{-2}$ d$^{-1}$) than measured in the offshore (cycle 4, 133 ± 18 mg C m$^{-2}$ d$^{-1}$) or coastal (cycle 3, 150 ± 32 mg C m$^{-2}$ d$^{-1}$) locations. Cycle 1 export was twofold greater than the highest sediment trap flux previously measured in nonfrontal waters of the CCE (Fig. 3A), corroborating the 234Th inferences of high local export in the frontal region. Enhanced export was also found for cycle 5 (328 ± 24 mg C m$^{-2}$ d$^{-1}$), conducted in waters with features most closely resembling the region of subsurface expression of the front, but not for cycle 2 (150 ± 68 mg C m$^{-2}$ d$^{-1}$).

We also estimated sinking particle flux from two high-resolution vertical sections across the front (Fig. 2) using a steady-state 238U–234Th deficiency equation (Fig. 3B). Although this approach...
has substantial uncertainty due to the complex 3D structure of E-Front and the short residence time of water in the feature, this simple export proxy produced results similar to the sediment traps, showing elevated export relative to typical measurements made from 234Th in the CCE. Averaging the steady-state export estimates for the two transects, $104 \text{ mg C m}^{-2} \text{ d}^{-1}$ (84 to 124, mean and 95% C.L.) for transect 1 and $185 \text{ mg C m}^{-2} \text{ d}^{-1}$ for transect 2, these 234Th-based measurements for the 30-km-wide E-Front are approximately twofold higher than the typical export flux determined by 234Th in the CCE (80 mg C m$^{-2}$ d$^{-1}$). Similarly, average export from sediment trap deployments in the frontal region (305 mg C m$^{-2}$ d$^{-1}$; cycles 1, 2, and 5) was ~2.5x higher than the typical nonfrontal value of 121 mg C m$^{-2}$ d$^{-1}$, as well as greater than the trap fluxes on the offshore or coastal sides of the front (133 and 150 mg C m$^{-2}$ d$^{-1}$, respectively).

Subduction of Organic Matter. The two high-resolution vertical sections across the front showed contrasting spatial patterns of 234Th. Our initial transect (4–5 August) showed a subsurface deficiency maximum (30 m to 70 m depth) at the front (Fig. 2A), which could result from subduction of high-deficiency surface waters or from localized subsurface particle production and sinking. Although the latter scenario is known to occur in offshore oligotrophic regions of the CCE, we found no evidence of subsurface PP maxima in any of our five Lagrangian cycles or in a PP model parameterized from cruise data, which showed most productivity in the upper 25 m of the water column. The measured 234Th section thus suggests along-isopycnal subduction of high-deficiency water from the coastal side of the front. This along-isopycnal 234Th feature was further associated with enhanced subsurface concentrations of POC (Fig. 2C) and TOC (Fig. S3), consistent with POC subduction at the front. In contrast, similar measurements 2 wk later did not show evidence of frontal subduction (Fig. 2B) but rather a shoaling of the 234Th isocline between isopycnals 1.025 and 1.025.5 kg m$^{-3}$ caused by mild upwelling. Such differences are an expected feature of dynamic fronts, in which meanders produce alternating regions of subduction and upwelling. Such dynamics (combined with the long half-life of 234Th) also likely explain the larger-scale patterns of surface 234Th during our transects (Fig. 1). Downwelling conditions lead to convergent frontal features that set stark boundaries between coastal (high deficiency) and offshore (low deficiency) water. Upwelling conditions lead to divergent features, with high gravitational flux at the front creating a wider high-deficiency signature.

To further investigate and quantify the export flux from subduction, we used a dynamically consistent, data-assimilating ROMS model (29, 30). Consistent with observational interpretations, modeled vertical velocities confirmed relatively strong subduction over most of E-Front during transect 1 and weak upwelling during transect 2 (Fig. 4). Using measured POC and ΔTOC (the difference between E-Front TOC and typical deep-water TOC) concentrations at the base of the euphotic zone and modeled vertical velocities, we calculated areally averaged POC subduction rates of 475 (270 to 687, 95% C.I.) and ~25 (~82 to 31) mg C m$^{-2}$ d$^{-1}$ for transects 1 and 2, respectively, and ΔTOC subduction rates of 379 (195 to 549) and ~17 (~60 to 28) mg C m$^{-2}$ d$^{-1}$. The fate of the subducted POC is unknown, but it coincided with high subsurface NH$_4^+$ concentrations (>1 μmol L$^{-1}$) on transect 1, suggesting rapid remineralization beneath the euphotic zone. Importantly, this advective transport, averaging 225 (POC) or 181 (ΔTOC) mg C m$^{-2}$ d$^{-1}$, must be added to the gravitational flux (305 mg C m$^{-2}$ d$^{-1}$) to determine total export enhancement at E-Front, because the subducted bulk suspended material is not measured by sediment traps or 234Th.238Un U deficiency.

Using a chlorophyll–light diagnostic model parameterized with measured 14C PP from the Lagrangian cycles, we calculated PP across the transects to determine the fraction of PP exported as POC out of the base of the euphotic zone. Because typical formulations of the e ratio (export/PP) do not account for advective flux, we define the e$_{POC}$ ratio as the sum of advective and sinking PP export divided by 14C PP. The calculated e$_{POC}$ ratios of 67% for transect 1 exceeded the average f ratio at the front (52%) determined using NO$_3^-$ and NH$_4^+$ concentrations and an ecosystem model parameterized for the CCE. For transect 2, the e$_{POC}$ ratio of 11% was lower than the f ratio (45%).

Mechanisms of Enhanced Gravitational Flux. To elucidate the mechanisms causing enhanced gravitational export at the front, we investigated phytoplankton and zooplankton dynamics during each Lagrangian experiment. Cycle 1 (at the front) had higher vertically integrated 14C PP (1,451 ± 140 mg C m$^{-2}$ d$^{-1}$) than coastal or offshore cycles (Fig. 3d). Previous nonfrontal experiments exhibited decreased export efficiency (e ratio) when PP was high (19, 24). In contrast, at the front (cycle 1), the plankton community maintained a high e ratio (30%) despite enhanced phytoplankton production.

We evaluated two nonexclusive mechanisms that could cause an increase in export efficiency at the front: mesozooplankton fecal pellet production and increased silicification by diatoms.
Mesozooplankton fecal pellets are major contributors to sinking flux in the CCE (19). Cycle 1 showed substantially enhanced grazing (and mesozooplankton biomass) relative to the other cycles, with grazing rate estimates (6.3 ± 2.9 mg Chl a m⁻² d⁻¹) on the high side of previous measurements in the CCE (Fig. S2D). Similarly, mesozooplankton herbivory was enhanced at E-Front in transect samples (Fig. 5 E and F), and we measured high concentrations of phaeopigments and high phaeopigment:Chl a ratios (4, highest for cycles 1 and 5) in the sediment traps, indicative of high fecal pellet flux produced by herbivorous zooplankton.

Fe limitation has been shown to drive enhanced export in the CCE by increasing silification by diatoms that continue to take up Si despite reduced organic matter production (31). The increased cellular Si:N ratios amplify the ballasting effect of diatoms, leading to increased sphericity and higher sinking rates of aggregates and fecal pellets that contain diatoms. Decoupled Si and N uptake also leads to low dissolved Si(OH)₄:NO₃ ratios in the water column. Negative values of Si excess [Siex = [Si(OH)₄] - [NO₃⁻] × RSiNO₃, where RSiNO₃ is the Si(OH)₄:NO₃ ratio of upwelled water, equal to 1 mol:mol for the CCE (32)] are diagnostic of Fe limitation in the CCE and are evident in samples from the E-Front transects (Fig. 5 A and B) and cycle 1 (Fig. S2B). Conversely, Siex values were high (and grazing low) for cycle 2, the only near-front cycle that did not show enhanced export. Variable fluorescence (indicative of the photosynthetic status of phytoplankton and correlated with Fe availability) was low at the front (Fig. 5 C and D), consistent with Fe limitation. The ratio of nitrate-dissolved Fe (micromol of NO₃⁻:nanomol of dFe) is another diagnostic feature of Fe limitation in the CCE, with ratios in excess of 5 indicating significant potential for Fe limitation of diatoms (31–33). Consistent with our interpretation of Fe limitation in the main axis of the front, we found NO₃⁻:dFe values of 10 to 26 in the upper 50 m during cycle 1 and consistently >5 on the coastal edge of the E-Front transects. A 3-d deckboard Fe-enrichment experiment during cycle 1 also showed increased NO₃⁻ drawdown, ¹⁵NO₃⁻ uptake, and biomass production in Fe-amended bottles relative to control incubations (Fig. S2C). Thus, increased efficiency of carbon export at E-Front appears to be linked to Fe limitation of diatoms, which leads to increased silification and rapid sinking of the heavily ballasted fecal pellets produced by zooplankton grazing, although other mechanisms may contribute as well.

Export at Fronts. Although our study focused on a single mesoscale feature, the two mechanisms that drove high gravitational flux at E-Front are likely common for eastern boundary upwelling systems (EBUS), where fronts are typically associated with elevated phytoplankton and zooplankton biomass (26, 34). For example, Fe limitation was shown to increase export in a gradient region between cyclonic and anticyclonic eddies close to Point Conception (31), and significantly elevated mesozooplankton biomass and organic aggregate abundance (28) were demonstrated at a front ∼300 km southeast of E-Front.

Front frequency in the CCE, measured by autonomous in situ gliders along California Cooperative Oceanic Fisheries Investigations (CalCOFI) lines 80 (near our study site) and 90 (extending offshore from the Southern California Bight), indicates that 8% of CCE water is within 15 km of a density front (34). If we assume that the greater than twofold enhancement of gravitational flux at E-Front is generally representative of the region, then over 14% of the total sinking particle flux in the region occurs near mesoscale fronts. Additionally, our mean estimate of ∼225 mg C m⁻² d⁻¹ for advective POC export in subducted water parcels at E-Front suggests that total particle export at CCE fronts may exceed 25% of regional gravitational flux. Given the global importance of EBUS in total oceanic production and the similarity in their physical dynamics

Fig. 3. (A) Comparison of CCE-P1208 sediment trap-based export measurements (red) with prior sediment trap measurements made in nonfrontal regions on CCE LTER cruises (blue). Note high export for frontal cycles 1 and 5. (B) Vertical carbon flux at E-Front during transects (Left) and Lagrangian cycles (Right). Gravitational POC flux was estimated using two approaches: ²³⁴U-²³⁸Th deficiency with a simple steady-state equation without upwelling (blue, Left) and sediment traps (purple, Right). Advective carbon flux is an additional form of carbon export estimated from vertical velocities and POC (red) or ΔTOC concentrations (orange; ΔTOC is the difference between TOC measured on the transect and deepwater TOC). Boxes show quartiles, and whiskers show 95% confidence intervals. Far right shaded column in both plots indicates previous gravitational POC flux ranges in the CCE region at nonfrontal locations. Horizontal dashed lines show average previous gravitational flux in the CCE determined by sediment trap (purple) and ²³⁴Th (blue). In Right, results from nonfrontal cycles 4 and 3 (offshore/left and coastal/right, respectively) are shown for comparison.

Fig. 4. Vertical velocity sections at 34°36′N from the data assimilating ROMS model. Each section is a 6-d average centered at the midpoint sampling time of cross-frontal (A) transect 1 or (B) transect 2. Black lines are isopycnals. Black circles are ²³⁴Th sampling locations. Red shades are positive (upward) velocities, and blue shades are negative (downward) velocities. Note the strongly downward velocities along the core of the front in A and the weak upwelling velocities in B.
(35, 36), we can surmise that EBUS fronts are likely globally important loci for carbon transport into the ocean's interior. Although the present results clearly indicate the importance of mesoscale fronts to carbon sequestration in a contemporary coastal ocean system, they likely underestimate the role of fronts in a warmer, future climate. Within the CCE, a decadal-scale trend of increasing frontal frequency has been linked to long-term increases of upwelling favorable winds (25, 37). Continued strengthening of land–sea temperature differences, combined with increased stratification in other regions, will likely further increase the importance of particle export at mesoscale fronts to the global carbon cycle.

Materials and Methods

Cruise Overview. Our sampling scheme involved three distinct aspects: (i) 3D mapping of the large-scale physical structure of the front with a towed SeaSoar instrument; these surveys (referred to as SeaSoar surveys) were combined with surface mapping of 234Th deficiency and other biogeochemical properties in the region; (ii) Nearly synoptic 50-km transects across the frontal feature while measuring biogeochemical and ecological properties at 6 to 8 depths at 10 to 13 stations across the front; and (iii) Lagrangian experiments (referred to as “cycles”) during which we followed an in situ array drogued at 15 m depth, on which we attached bottles for experimental incubations including 38Si uptake (38). The array provided a moving frame of reference for a suite of other measurements including mesozooplankton biomass and grazing rates, 234Th,238U disequilibrium measurements, nutrients, POM, and biological standing stocks. An identically drogued sediment trap array was deployed simultaneously on each cycle.

The front was initially located using satellite sea surface temperature (SST) and sea surface height (SSH), an autonomous Spray glider, and a free-fall Moving Vessel Profiler (28), then the region was mapped (SeaSoar Survey 1) from 30 July to 2 August. This initial survey was immediately followed by cross-frontal transect 1 (4 August, 1515 hours to 5 August, 1115 hours). After transect 1, we conducted the five cycles in different locations relative to the front. Cycles 1 to 5 lasted from 6 to 9 August, 10 to 12 August, 13 to 15 August, 16 to 18 August, and 19 to 20 August, respectively. After completing these experiments, cross-frontal transect 2 was conducted in waters near the location of transect 1 from 20 August, 1645 hours to 21 August, 0745 hours. The region was mapped again (SeaSoar Survey 2) from 21 to 25 August.

Export Measurements. Particle-interceptor trap (PIT)-style sediment traps (19, 39) with 8 to 12 cylindrical, 70-mm-diameter tubes with baffles on top were deployed at a depth near the base of the euphotic zone as determined from fluorescence profiles (60 m for cycles 1 and 3, 70 m on cycles 2 and 5, and 100 m on cycle 4). Tubes were deployed with a formaldehyde brine for a period of ∼2.25 d. After recovery, overlying material was removed by suction, and samples were split for C and N analyses by CHN analyzer, 234Th ratio analysis, and pigment measurements (Chl a and phaeopigments) by the acidification method. The 234Th concentrations were measured using standard small volume methods (40), including a 234Th tracer spike, filtration and beta counting at sea on a RISO beta counter, background beta counts >6 mo after the cruise, gravimetric addition of 238Th, and quantification of the $^{229}/^{230}$Th ratio by inductively coupled plasma (ICP) MS at the Woods Hole Oceanographic Institution Analytical Facility. The 238U−234Th deficiency was calculated after estimating 238U activity from salinity (41), assuming steady state, and vertically integrating.

Biological and Chemical Measurements. Samples were collected by Niskin bottle for measurements of biological and chemical standing stocks and rates. Chl a was measured by fluorometer with acidification. POC was measured with a CHN analyzer. TOC was measured on a Shimadzu analyzer. Nutrients [NO$_3^-$, NH$_4^+$, PO$_4^{3-}$, Si(OH)$_4$] were measured by autoanalyzer. Phytoplankton variable fluorescence was measured using the Advanced Laser Fluorometer (42). PP was measured by uptake of H$_4$CO$_3^-$ in triplicate 250-ml bottles incubated in situ for 24 h. Mesozooplankton were collected by vertical (on front transects) or oblique (during semi-Lagrangian cycles) net tows with a 0.71-m diameter, 202-μm mesh bongo net. Mesozooplankton grazing rates were determined from gut fluorescence measurements using gut turnover times calculated from a temperature-dependent equation (43).

Physical Model and POC Subduction. To measure the passive transport of organic carbon by subduction, we first used kriging to compute gridded fields of POC and ΔTOC (where ΔTOC is the difference between measured shallow
TOC and average deep TOC concentrations) along the two transects. We then calculated flux using the equations $J = (POC) \times w$ or $J = [LTTOC] \times w$, where J is flux (milligrams C per square meter per day) and w is the vertical velocity (meters per day) derived from a dynamically consistent data-assimilative model. Data assimilation was conducted within the ROMS with a 9-km grid resolution using a four-dimensional variational approach that repeatedly adjusted initial and boundary conditions to minimize the mismatch between the model and physical measurements (e.g., temperature, salinity) measured on our cruise (30).

ACKNOWLEDGMENTS. We thank Captain Chris Curl, the crew, and resident marine technicians of the RV Melville, whose efforts made this challenging cruise possible. We also thank Hugh Ducklow for the loan of the RISO beta counter; Mark Hafez, Megan Roadman, and our many collaborators in the CCE Long Term Ecological Research (LTER) program for help at sea; Peter Franks and Alain De Verneil for insightful discussions of the data; and two anonymous reviewers who provided very helpful feedback. Data used in this study are available on the CCE LTER Datasoo website. This study funded by National Science Foundation Grant OCE-1026607 to the CCE LTER site.